Engineering Graphics

> Universal language for engineers.

$>$ A drawing that contains all information of an object

Drawing is important for all branches of engineering.

Roll of engineering graphics

Visualization

Ability to mentally picture things that do not exist.

Communication
The design solution should be communicated without ambiguity.
Documentation
Permanent record of the solution.

Projection theory

\square 3-D objects are represented on a 2-D media.
\square The act of obtaining the image of an object is termed "projection".

The image obtained by projection is known as a "view".

A simple Projection system

Observer at finite distance from the object

Orthographic Projection

Lines of sight (LoS) are perpendicular to the plane of projection.
[Observer at infinite distance from the object.]

ORTHOGRAPHIC PROJECTION

THE QUADRANTS

Quadrant pattern observed along XY

Opening the quadrants

- Q1 and Q3 open outward
- Q2 and Q4 open inward

HP is rotated clockwise and brought in the plane of VP

After rotation

Upper part of VP \&

Rear part of HP

Lower part of VP
\&

Front part of HP

Different views

Position of views

Possible positions of an object

1. In $1^{\text {st }}$ quadrant: above HP \& in front of VP
2. In $2^{\text {nd }}$ quadrant: above HP \& behind VP
3. In 3rd quadrant: below HP \& behind VP
4. In $4^{\text {th }}$ quadrant: below HP \& in front of VP
5. In plane: on HP \& in front of VP
6. In plane: on HP \& behind VP
7. In plane: on VP \& above HP
8. In plane: on VP \& below HP
9. In planes: on HP \& on VP

PROJECTION OF POINTS

A - in First quadrant

$\mathrm{A} \longmapsto$ Object (point)
$a \longmapsto$ TV (plan)
$\mathrm{a}^{\prime} \Longleftrightarrow \mathrm{FV}$ (elevation)

PROJECTION OF POINTS

A - in first quadrant

Point A in First quadrant	
A above HP	$a^{\prime}-$ FV (Elevation) above XY
A in front of VP	$a-$ TV (Plan) below XY

Projection of lines

Q1. Point A is 25 mm above HP and 50 mm in front of VP. Draw the projections of A.

Solution steps

1. XY line (stronger line)
2. Projector (weakerline)
3. Read: A 25 mm above HP
4. Realize: a' 25 mm above XY and position a^{\prime} on the projector
5. Read: A $\mathbf{5 0} \mathbf{~ m m}$ in front of VP
6. Realize: a 50 mm below XY and position a on the projector

PROJECTION OF POINTS

A - in Second auadrant

A \leadsto Object (point)
$a \quad$ TV (plan)
$\mathbf{a}^{\prime} \longmapsto \mathrm{FV}$ (elevation)

HP rotated clockwise by 90°

PROJECTION OF POINTS

A - in Second auadrant

Point A in Second quadrant	
A above HP	$a^{\prime}-$ FV (Elevation) above XY
A behind VP	$a-$ T V (Plan) above XY

POINT A IN

$2^{\text {ND }}$ QUADRANT

PROJECTION OF POINTS

A-in Third quadrant

PROJECTION OF POINTS

A - in Third quadrant

Point A in Third quadrant

A below HP	$a^{\prime}-$ FV (Elevation) below XY
A behind VP	a - TV (Plan) above XY

POINT A IN

$3^{\text {RD }}$ QUADRANT

VP

Convention: Horizontal plane is always rotated clockwise

PROJECTION OF POINTS

A - in Fourth quadrant

$A \longmapsto$ Object (point)
$a \longmapsto$ TV (plan)
a^{\prime}

FV (elevation)

A - in Fourth quadrant

Point A in Fourth quadrant	
A below HP	$a^{\prime}-F V$ (Elevation) below XY
A in front of VP	$a-$ TV (Plan) below XY

Convention: Horizontal plane is always rotated clockwise

POINT ON HP

- 1- on HP \& in front of VP
> $1^{\prime}-$ on XY
>1 - below XY
- 2-on HP \& behind VP
> $\mathbf{2}^{\prime}$ - on XY
> 2 -above $X Y$

Point on VP, its TV (plan) on XY

POINT ON BOTH HP \& VP

Point on both HP \& VP, its Front and Top views on XY

PROJECTION OF POINTS

A in First quadrant
A above HP a' above XY
A in front of VPa below XY
A in Second quadrant
A above HPa' above XY
A behind VPa above XY
A in Third quadrant
A below HPa' below XY
A behind VPa above XY
A in Fourth quadrant
A below HPa' below XY
A in front of VPa below XY

PROJECTIONS OF POINTS

A above HP	a' above XY	
A on HP	a' on XY	
A below HP	a' below XY	
A in front of VP	a	below $X Y$
A on VP	a on XY	
A behind VP	a	above $X Y$

PROJECTIONS OF POINTS

Draw the projections of the following points.

1. A 40 mm above HP and 55 mm in front of VP.
2. B 10 mm above $H P$ and 25 mm behind $V P$.
3. $C 35 \mathrm{~mm}$ below $H P$ and 20 mm behind $V P$.
4. $D 10 \mathrm{~mm}$ below HP and 40 mm in front of VP .
5. E on HP and 50 mm in front of VP.
6. F on HP and 80 mm behind VP.
7. G on VP and 75 mm above HP.
8. H on VP and 30 mm below HP.
9. I on both HP and VP.

Draw the projections of the following points.

1. A 40 mm above $H P$ and 55 mm in front of $V P$.

(1). Line $A B$ has its end $A 25 \mathrm{~mm}$ above HP and 30 mm in front of VP. End B is 50 mm above HP and 70 mm in front of VP. Distance between the end projectors is 80 mm . Draw the projections of the

Two trapeziums through the line $A B$

(1). ABba

Surface perpendicular to HP. Surface inclined to VP. Base on HP. Base ab represents TV of AB
(2). ABb'a'

Surface perpendicular to VP. Surface inclined to HP. Base on VP.
 Base $\mathbf{a}^{\prime} \mathbf{b}^{\prime}$ represents FV of AB
$\boldsymbol{\phi}$--inclination of AB to VP.
--angle b/w True length \& its FV.
--angle b/w AB \& a'b'.

Line $A B$ in space.
TV (ab) on HP.
FV ($a^{\prime} b^{\prime}$) on VP.

$\boldsymbol{\theta}$-inclination of $A B$ to $H P$.
--angle b/w True length \& its TV.
--angle b/w AB \& ab.

Length of $\mathrm{ab}_{1}=$ length of ab
Height of $b^{\prime}{ }_{1}=$ Height of b^{\prime}

TV parallel to $X Y ;$ FV represents the True length

LINE AB INCLINED TO HP \& VP

(1). Line $A B$ has its end $A 25 \mathrm{~mm}$ above HP and 30 mm in front of VP. End B is 50 mm above HP and 70 mm in front of VP. Distance between the end projectors is 80 mm . Draw the projections of the

TRACES OF A LINE

All Elevation points are collinear; ht' on xy

2. θ line (vt'-b3') from β line(vt-b)

Three $\boldsymbol{\phi}$ lines from Three $\boldsymbol{\alpha}$ lines

Three $\boldsymbol{\theta}$ lines from Three $\boldsymbol{\beta}$ lines
$b^{\prime} \quad b_{1}{ }^{\prime} \mathbf{b a}^{\prime}{ }^{\prime} b_{5}{ }^{\prime}$

True length from α line

Triangle formed

Three ϕ Triangles

ht Length of α line ($h t^{\prime}-b^{\prime}$)

Length of α line ($v t^{\prime}-b^{\prime}$)
vt locus of b

Base length of each ϕ triangle equals Length of corresponding α lines
b_{2}, b_{4}, b_{6}, on the locus of b True/eno

Three ϕ Triangles Length of α line ($a^{\prime}-b^{\prime}$)

ht Length of α line $\left(h t^{\prime}-b^{\prime}\right)^{4}$

Length of α line ($v t^{\prime}-b^{\prime}$)
$\mathbf{b}_{2}, \mathbf{b}_{4}, \mathbf{b}_{6}$, on the locus of \mathbf{b} Base length of each ϕ triangle equals Length of corresponding α
 lines

Three θ Triangles

$b_{1}{ }^{\prime}, b_{3}{ }^{\prime} b_{5}{ }^{\prime}$, on the locus of b^{\prime}
Base length of each θ triangle equals Length of corresponding $\boldsymbol{\beta}$ lines

True length from β line
θ Triangle formed

Three φ lines from Three α lines
b^{\prime}

Three φ Triangles
($a-b_{2}-2$)......... from ($a^{\prime}-b^{\prime}$)
(vt-b $b_{4}-4$)...... from ($\left.v t^{\prime}-b^{\prime}\right)$
($h t-b_{6}-6$)...... from ($h t^{\prime}-b^{\prime}$)

LINES.

Projection of lines.

Locate Traces of the line.

Find True length of the line.

True length from Plan.

True length from Elevation.

Obtain inclinations of the line.

Master solution.

True length from β line
θ Triangle formed

Inclinations of AB to HP and VP

(1).To HP = angle between $A B$ and $a b$
(Trapezium on HP provides θ)
(2).To $V P=$ angle between $A B$ and $a^{\prime} b^{\prime}$
(Trapezium on VP provides ϕ)

